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Abstract

Network security applications often require analyzing

huge volumes of data to identify abnormal patterns or

activities. The emergence of cloud-computing models

opens up new opportunities to address this challenge by

leveraging the power of parallel computing.

In this paper, we design and implement a novel sys-

tem called BotGraph to detect a new type of botnet spam-

ming attacks targeting major Web email providers. Bot-

Graph uncovers the correlations among botnet activities

by constructing large user-user graphs and looking for

tightly connected subgraph components. This enables us

to identify stealthy botnet users that are hard to detect

when viewed in isolation. To deal with the huge data

volume, we implement BotGraph as a distributed appli-

cation on a computer cluster, and explore a number of

performance optimization techniques. Applying it to two

months of Hotmail log containing over 500 million users,

BotGraph successfully identified over 26 million botnet-

created user accounts with a low false positive rate. The

running time of constructing and analyzing a 220GB Hot-

mail log is around 1.5 hours with 240 machines. We be-

lieve both our graph-based approach and our implemen-

tations are generally applicable to a wide class of security

applications for analyzing large datasets.

1 Introduction

Despite a significant breadth of research into botnet de-

tection and defense (e.g., [8, 9]), botnet attacks remain

a serious problem in the Internet today and the phenom-

enon is evolving rapidly ( [4, 5, 9, 20]): attackers con-

stantly craft new types of attacks with an increased level

of sophistication to hide each individual bot identities.

One recent such attack is the Web-account abuse at-
tack [25]. Its large scale and severe impact have re-

peatedly caught public media’s attention. In this attack,

spammers use botnet hosts to sign up millions of user ac-

counts (denoted as bot-users or bot-accounts) from major

free Web email service providers such as AOL, Gmail,

Hotmail, and Yahoo!Email. The numerous abused bot-

accounts were used to send out billions of spam emails

across the world.

Existing detection and defense mechanisms are inef-

fective against this new attack: The widely used mail

server reputation-based approach is not applicable be-

cause bot-users send spam emails through only legitimate

∗The work was done while Yao was an intern at Microsoft Research

Silicon Valley.

Web email providers. Furthermore, it is difficult to differ-

entiate a bot-user from a legitimate user individually, as

both users may share a common computer and that each

bot-user sends only a few spam emails 1.

While detecting bot-users individually is difficult, de-

tecting them as an aggregate holds the promise. The ratio-

nal is that since bot-users are often configured similarly

and controlled by a small number of botnet commanders,

they tend to share common features and correlate each

other in their behavior such as active time, spam con-

tents, or email sending strategies [24, 27]. Although this

approach is appealing, realizing it to enable detection at

a large scale has two key challenges:

• The first is the algorithmic challenge in finding sub-

tle correlations among bot-user activities and distin-

guishing them from normal user behavior.

• The second challenge is how to efficiently analyze

a large volume of data to unveil the correlations

among hundreds of millions of users. This requires

processing hundreds of gigabytes or terabytes of

user activity logs.

Recent advancement in distributed programming

models, such as MapReduce [6], Hadoop [2], and

Dryad/DryadLINQ [10, 29], has made programming and

computation on a large distributed cluster much easier.

This provides us with opportunities to leverage the paral-

lel computing power to process data in a scalable fashion.

However, there still exist many system design and imple-

mentation choices.

In this paper, we design and implement a system called

BotGraph to detect the Web-account abuse attack at a

large scale. We make two important contributions.

Our first contribution is to propose a novel graph-

based approach to detect the new Web-account abuse at-

tack. This approach exposes the underlying correlations

among user-login activities by constructing a large user-
user graph. Our approach is based on the observation that

bot-users share IP addresses when they log in and send

emails. BotGraph detects the abnormal sharing of IP ad-

dresses among bot-users by leveraging the random graph

theory. Applying BotGraph to two months of Hotmail

log of total 450GB data, BotGraph successfully identified

over 26 million bot-accounts with a low false positive rate

of 0.44%. To our knowledge, we are the first to provide a

1Recent anecdotal evidence suggests that bot-users have also been

programmed to receive emails and read them to make them look more

legitimate.
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systematic solution that can successfully detect this new

large-scale attack.

Our second contribution is an efficient implementa-

tion using the new distributed programming models for

constructing and analyzing large graphs. In our applica-

tion, the graph to construct involves tens of millions of

nodes and hundreds of billions of edges. It is challeng-

ing to efficiently construct such large graphs on a com-

puter cluster as the task requires computing pair-wise cor-

relations between any two users. We present two graph

construction methods using different execution plans: the

simpler one is based on the MapReduce model [6], and

the other performs selective filtering that requires the

Join operation provided by Map-Reduce-Merge [28] or

DryadLINQ [29]. By further exploring several perfor-

mance optimization strategies, our implementation can

process a one-month dataset (220GB-240GB) to con-

struct a large graph with tens of millions of nodes in 1.5

hours using a 240-machine cluster. The ability to effi-

ciently compute large graphs is critical to perform con-

stant monitoring of user-user graphs for detecting attacks

at their earliest stage.

Our ultimate goal, however, is not to just tackle this

specific new form of attacks, but also to provide a general

framework that can be adapted to other attack scenarios.

To this end, the adoption of a graph representation can

potentially enable us to model the correlations of a wide

class of botnet attacks using various features. Further-

more, since graphs are powerful representations in many

tasks such as social network analysis and Web graph min-

ing, we hope our large-scale implementations can serve

as an example to benefit a wide class of applications for

efficiently constructing and analyzing large graphs.

The rest of the paper is organized as follows. We dis-

cuss related work in Section 2, and overview the Bot-

Graph system in Section 3. We then describe in Sec-

tion 4 the detail algorithms to construct and analyze a

large user-user graph for attack detection. We present

the system implementation and performance evaluation

in Section 5, followed by attack detection results in Sec-

tion 6. Finally, we discuss attacker countermeasures and

system generalizations in Section 7.

2 Background and Related Work

In this section, we first describe the new attack we focus

on in our study, and review related work in botnet detec-

tion and defense. As we use Dryad/DryadLINQ as our

programming model for analyzing large datasets, we also

discuss existing approaches for parallel computation on

computer clusters, particularly those relate to the recent

cloud computing systems.

2.1 Spamming Botnets and Their Detection

The recent Web-account abuse attack was first reported

in summer 2007 [25], in which millions of botnet email

accounts were created from major Web email service

providers in a short duration for sending spam emails.

While each user is required to solve a CAPTCHA test

to create an account, attackers have found ways to by-

pass CAPTCHAs, for example, redirecting them to ei-

ther spammer-controlled Web sites or dedicated cheap

labor 2. The solutions are sent back to the bot hosts

for completing the automated account creation. Tro-

jan.Spammer.HotLan is a typical worm for such auto-

mated account signup [25]. Today, this attack is one of

the major types of large-scale botnet attacks, and many

large Web email service providers, such as Hotmail, Ya-

hoo!Mail, and Gmail, are the popular attack targets. To

our best knowledge, BotGraph is one of the first solutions

to combat this new attack.

The Web-account abuse attack is certainly not the first

type of botnet spamming attacks. Botnet has been fre-

quently used as a media for setting up spam email servers.

For example, a backdoor rootkit Spam-Mailbot.c can

be used to control the compromised bots to send spam

emails. Storm botnet, one of the most widespread P2P

botnets with millions of hosts, at its peak, was deemed re-

sponsible for generating 99% of all spam messages seen

by a large service provider [9, 19].

Although our work primarily focuses on detecting the

Web-account abuse attack, it can potentially be general-

ized to detect other botnet spamming attacks. In this gen-

eral problem space, a number of previous studies have

all provided us with insights and valuable understanding

towards the different characteristics of botnet spamming

activities [1, 11, 23, 26]. Among recent work on detecting

botnet membership [20, 22, 24, 27], SpamTracker [24]

and AutoRE [27] also aim at identifying correlated spam-

ming activities and are more closely related with our

work. In addition to exploiting common features of bot-

net attacks as SpamTracker and AutoRE do, BotGraph

also leverages the connectivity structures of the user-user

relationship graph and explores these structures for bot-

net account detection.

2.2 Distributed and Parallel Computing

There has been decades of research on distributed and

parallel computing. Massive parallel processing (MPP)

develops special computer systems for parallel comput-

ing [15]. Projects such as MPI (Message Passing Inter-

face) [14] and PVM(Parallel Virtual Machine) [21] de-

velop software libraries to support parallel computing.

Distributed database is another large category of parallel

data processing applications [17].

The emergence of cloud computing models, such as

MapReduce [6], Hadoop [2], Dryad/DryadLINQ [10,

29], has enabled us to write simple programs for effi-

ciently analyzing a vast amount of data on a computer

cluster. All of them adopt the notion of staged computa-

tion, which makes scheduling, load balancing, and failure

recovery automatic. This opens up a plethora of oppor-

tunities for re-thinking network security—an application

2Interestingly, solving CAPTCHAs has ended up being a low-wage

industry [3].



USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 323

that often requires processing huge volumes of logs or

trace data. Our work is one of the early attempts in this

direction.

While all of these recent parallel computing models of-

fer scalability to distributed applications, they differ in

programming interfaces and the built-in operation prim-

itives. In particular, MapReduce and Hadoop provide

two simple functions, Map and Reduce, to facilitate data

partitioning and aggregation. This abstraction enables

applications to run computation on multiple data parti-

tions in parallel, but is difficult to support other com-

mon data operations such as database Join. To overcome

this shortcoming, Map-Reduce-Merge [28] introduces a

Merge phase to facilitate the joining of multiple hetero-

geneous datasets. More recent scripting languages, such

as Pig Latin [16] and Sawzall [18], wrap the low level

MapReduce procedures and provide high-level SQL-like

query interfaces. Microsoft Dryad/DryadLINQ [10, 29]

offers further flexibility. It allows a programmer to write

a simple C# and LINQ program to realize a large class of

computation that can be represented as a DAG.

Among these choices, we implemented BotGraph us-

ing Dryad/DryadLINQ, but we also consider our process-

ing flow design using the more widely used MapReduce

model and compare the pros and cons. In contrast to

many other data-centric applications such as sorting and

histogram computation, it is much more challenging to

decompose graph construction for parallel computation

in an efficient manner. In this space, BotGraph serves

as an example system to achieve this goal using the new

distributed computing paradigm.

3 BotGraph System Overview

Our goal is to capture spamming email accounts used by

botnets. As shown in Figure 1, BotGraph has two com-

ponents: aggressive sign-up detection and stealthy bot-

user detection. Since service providers such as Hotmail

limit the number of emails an account can send in one

day, a spammer would try to sign up as many accounts

as possible. So the first step of BotGraph is to detect ag-

gressive signups. The purpose is to limit the total number

of accounts owned by a spammer. As a second step, Bot-

Graph detects the remaining stealthy bot-users based on

their login activities. With the total number of accounts

limited by the first step, spammers have to reuse their ac-

counts, resulting in correlations among account logins.

Therefore BotGraph utilizes a graph based approach to

identify such correlations. Next, we discuss each compo-

nent in detail.

3.1 Detection of Aggressive Signups

Our aggressive signup detection is based on the premise

that signup events happen infrequently at a single IP ad-

dress. Even for a proxy, the number of users signed up

from it should be roughly consistent over time. A sud-

den increase of signup activities is suspicious, indicating

that the IP address may be associated with a bot. We use
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Figure 1: The Architecture of BotGraph.

a simple EWMA (Exponentially Weighted Moving Av-

erage) [13] algorithm to detect sudden changes in signup

activities. This method can effectively detect over 20 mil-

lion bot-users in 2 months (see Appendix A for more de-

tails on EWMA). We can then apply adaptive throttling to

rate limit account-signup activities from the correspond-

ing suspicious IP addresses.

One might think that spammers can gradually build up

an aggressive signup history for an IP address to evade

EWMA-based detection. In practice, building such a his-

tory requires a spammer to have full control of the IP

address for a long duration, which is usually infeasible

as end-users control the online/offline switch patterns of

their (compromised) computers. The other way to evade

EWMA-based detection is to be stealthy. In the next sec-

tion we will introduce a graph based approach to detect

stealthy bot-users.

3.2 Detection of Stealthy Bot-accounts

Our second component detects the remaining stealthy

bot-accounts. As a spammer usually controls a set of bot-

users, defined as a a bot-user group, these bot-users work

in a collaborative way. They may share similar login or

email sending patterns because bot-masters often manage

all their bot-users using unified toolkits. We leverage the

similarity of bot-user behavior to build a user-user graph.

In this graph, each vertex is a user. The weight for an

edge between two vertices is determined by the features

we use to measure the similarity between the two vertices

(users). By selecting the appropriate features for similar-

ity measurement, a bot-user group will reveal itself as a

connected component in the graph.

In BotGraph, we use the number of common IP ad-

dresses logged in by two users as our similarity fea-

ture (i.e., edge weight). This is because the aggres-

sive account-signup detection limits the number of bot-

accounts a spammer may obtain. In order to achieve a

large spam-email throughout, each bot-account will log

in and send emails multiple times at different locations,

resulting in the sharing of IP addresses as explained be-

low:

• The sharing of one IP address: For each spammer,

the number of bot-users is typically much larger than

the number of bots. Our data analysis shows that on

each day, the average number of bot-users is about
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50 times more than the number of bots. So multiple

bot-users must log in from a common bot, resulting

in the sharing of a common IP address.

• The sharing of multiple IP addresses: We found

that botnets may have a high churn rate. A bot

may be quarantined and leave the botnet, and new

bots may be added. An active bot may go offline

and it is hard to predict when it will come back on-

line. To maximize the bot-account utilization, each

account needs to be assigned to different bots over

time. Thus a group of bot-accounts will also share

multiple IP addresses with a high probability.

Our BotGraph system leverages the two aforemen-

tioned IP sharing patterns to detect bot-user activities.

Note that with dynamic IP addresses and proxies, nor-

mal users may share IP addresses too. To exclude such

cases, multiple shared IP addresses in the same Au-

tonomous System (AS) are only counted as one shared

IP address. In the rest of this paper, we use the number of

“shared IP addresses” to denote the the number of ASes

of the shared IP addresses. It is very rare to have a group

of normal users that always coincidentally use the same

set of IP addresses across different domains. Using the

AS-number metric, a legitimate user on a compromised

bot will not be mistakenly classified as a bot-user because

their number of “shared IPs” will be only one 3.

4 Graph-Based Bot-User Detection

In this section we introduce random graph models to

analyze the user-user graph. We show that bot-user

groups differentiate themselves from normal user groups

by forming giant components in the graph. Based on the

model, we design a hierarchical algorithm to extract such

components formed by bot-users. Our overall algorithm

consists of two stages: 1) constructing a large user-user

graph, 2) analyzing the constructed graph to identify bot-

user groups. Note one philosophy we use is to analyze

group properties instead of single account properties. For

example, it may be difficult to use email-sending statistics

for individual bot-account detection (each bot account

may send a few emails only), but it is very effective to

use the group statistics to estimate how likely a group

of accounts are bot-accounts (e.g., they all sent a similar

number of emails).

4.1 Modeling the User-User Graph

The user-user graph formed by bot-users is drastically

different from the graph formed by normal users: bot-

users have a higher chance of sharing IP addresses and

thus more tightly connected in the graph. Specifically,

we observed the bot-user subgraph contains a giant con-
nected component—a group of connected vertices that

occupies a significant portion of the subgraph, while

3We assume majority of hosts are physically located in only one AS.

We discuss how to prune legitimate mobile users in Section 4.2.2.

the normal-user subgraph contains only isolated vertices

and/or very small connected components. We introduce

the random graph theory to interpret this phenomenon

and to model the giant connected components formed by

bot-users. The theory also serves as a guideline for de-

signing our graph-based bot-user detection algorithm.

4.1.1 Giant Component in User-User Graph

Let us first consider the following three typical strategies

used by spammers for assigning bot-accounts to bots, and

examine the corresponding user-user graphs.

• Bot-user accounts are randomly assigned to bots. Ob-

viously, all the bot-user pairs have the same probability

p to be connected by an edge.

• The spammer keeps a queue of bot-users (i.e., the

spammer maintains all the bot-users in a predefined

order). The bots come online in a random order. Upon

request from a bot when it comes online, the spammer

assigns to the requesting bot the top k available (cur-

rently not used) bot-users in the queue. To be stealthy,

a bot makes only one request for k bot-users each day.

• The third case is similar to the second case, except that

there is no limit on the number of bot-users a bot can

request for one day and that k = 1. Specifically, a

bot requests one bot-account each time, and it asks for

another account after finishing sending enough spam

emails using the current account.

We simulate the above typical spamming strategies and

construct the corresponding user-user graph. In the simu-

lation, we have 10,000 spamming accounts (n = 10, 000)

and 500 bots in the botnet. We assume all the bots are ac-

tive for 10 days and the bots do not change IP addresses.

In model 2, we pick k = 20. In model 3, we assume the

bots go online with a Poisson arrival distribution and the

length of bot online time fits a exponential distribution.

We run each simulation setup 10 times and present the

average results.

Figure 2 shows the simulation results. We can see that

there is a sharp increase of the size of the largest con-

nected component as the threshold T decreases (i.e., the

probability of two vertices being connected increases). In

other words, there exists some transition point of T . If T

is above this transition point, the graph contains only iso-

lated vertices and/or small components. Once T crosses

the transition point, the giant component “suddenly” ap-

pears. Note that different spamming strategies may lead

to different transition values. Model 2 has a transition

value of T = 2, while Model 1 and 3 have the same tran-

sition value of T = 3.

Using email server logs and a set of known botnet ac-

counts provided by the Hotmail operational group, we

have confirmed that generally bot-users are above the

transition point of forming giant components, while nor-

mal users usually cannot form large components with

more than 100 nodes.
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Figure 2: The size of the largest connected component.

4.1.2 Random Graph Theory

The sudden appearance of a giant subgraph component

after a transition point can be interpreted by the theory of

random graphs.

Denote G(n, p) as the random graph model, which

generates a n-vertex graph by simply assigning an edge

to each pair of vertices with probability p ∈ (0, 1]. We

call the generated graph an instance of the model G(n, p).
The parameter p determines when a giant connected com-

ponent will appear in the graph generated by G(n, p).
The following property is derived from theorems in [7,

p.65∼67]:

Theorem 1 A graph generated by G(n, p) has average
degree d = n · p. If d < 1, then with high probabil-
ity the largest component in the graph has size less than
O(logn). If d > 1, with high probability the graph will
contain a giant component with size at the order ofO(n).

For a group of bot-users that share a set of IPs, the av-

erage degree will be larger than one. According to the

above theorem, the giant component will appear with a

high probability. On the other hand, normal users rarely

share IPs, and the average degree will be far less than

one when the number of vertices is large. The resulted

graph of normal users will therefore contain isolated ver-

tices and/or small components, as we observe in our case.

In other words, the theorem interprets the appearance of

giant components we have observed in subsection 4.1.1.

Based on the theorem, the sizes of the components can

serve as guidelines for bot-user pruning and grouping

(discussed in subsection 4.2.2 and 4.2.3).

4.2 Bot-User Detection Algorithm

As we have shown in section 4.1, a bot-user group forms a

connected component in the user-user graph. Intuitively

one could identify bot-user groups by simply extracting

the connected components from the user-user graph gen-

erated with some predefined threshold T (the least num-

ber of shared IPs for two vertices to be connected by an

edge). In reality, however, we need to handle the follow-

ing issues:

• It is hard to choose a single fixed threshold of T . As we

can see from Figure 2, different spamming strategies

may lead to different transition points.

• Bot-users from different bot-user groups may be in the

same connected component. This happens due to: 1)

bot-users may be shared by different spammers, and 2)

a bot may be controlled by different spammers.

• There may exist connected components of normal

users. For example, mobile device users roaming

around different locations will be assigned IP ad-

dresses from different ASs, and therefore appeared as

a connected component.

To handle these problems, we propose a hierarchical

algorithm to extract connected components, followed by

a pruning and grouping procedure to remove false posi-

tives and to separate mixed bot-user groups.

4.2.1 Hierarchical Connected-Component
Extraction

Algorithm 1 describes a recursive function

Group Extracting that extracts a set of connected

components from a user-user graph in a hierarchical

way. Having such a recursive process avoids using a

fixed threshold T , and is potentially robust to different

spamming strategies.

Using the original user-user graph as input, Bot-

Graph begins with applying Group Extracting(G, T) to

the graph with T = 2. In other words, the algorithm first

identifies all the connected components with edge weight

w ≥ 2. It then recursively increases w to extract con-

nected subcomponents. This recursive process continues

until the number of nodes in the connected component

is smaller than a pre-set threshold M (M = 100 in our

experiments). The final output of the algorithm is a hier-

archical tree of the connected components with different

edge weights.

procedure Group Extracting(G, T )

1 Remove all the edges with weight w < T from G

and suppose we get G;

2 Find out all the connected subgraphs G1, G2, · · · ,

Gk in G;

3 for i = 1 : k do
4 Let |Gk| be the number of nodes in Gk;

5 if |Gk| > M then
6 Output Gk as a child node of G ;

7 Group Extracting(Gk, T + 1) ;

end

end

Algorithm 1: A Hierarchical algorithm for connected

component extraction from a user-user graph.

4.2.2 Bot-User Pruning

For each connected component output by Algorithm 1,

we want to compute the level of confidence that the set

of users in the component are indeed bot-users. In par-

ticular, we need to remove from the tree (output by Al-
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Figure 3: Histograms of (1) number of emails sent per day and

(2) email size. First row: aggressive bot-users; second row:

normal users.

gorithm 1) the connected components involving mostly

legitimate/normal users.

A major difference between normal users and bot-users

is the way they send emails. More specifically, normal

users usually send a small number of emails per day on

average, with different email sizes. On the other hand,

bot-users usually send many emails per day, with iden-

tical or similar email sizes, as they often use a common

template to generate spam emails. It may be difficult to

use such differences in email-sending statistics to classify

bot-accounts individually. But when a group of accounts

are viewed in aggregate, we can use these statistics to es-

timate how likely the entire group are bot-users. To do so,

for each component, BotGraph computes two histograms

from a 30-day email log:

• h1: the numbers of emails sent per day per user.

• h2: the sizes of emails.

Figure 3 shows two examples of the above two his-

tograms, one computed from a component consisting of

bot-users (the first row), the other from a component of

normal users (the second row). The distributions are

clearly different. Bot-users in a component sent out a

larger number of emails on average, with similar email

sizes (around 3K bytes) that are visualized as the peak in

the email-size histogram. Most normal users sent a small

number of emails per day on average, with email sizes

distributing more uniformly. BotGraph normalizes each

histogram such that its sum equals to one, and computes

two statistics, s1 and s2, from the normalized histograms

to quantify their differences:

• s1: the percentage of users who sent more than 3

emails per day;

• s2: the areas of peaks in the normalized email-size his-

togram, or the percentage of users who sent out emails

with a similar size.

�
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� �

�

�

�

Figure 4: An example of extracting bot-user groups using the

random graph model.

Since the histograms are normalized, both s1 and s2
are in the range of [0, 1] and can be used as confidence

measures. A large confidence value means that the major-

ity of the users in the connected component are bot-users.

We use only s1 to choose the candidates of bot-user com-

ponents, because s1 represents a more robust feature. We

use s2 together with other features (e.g., account naming

patterns) for validation purpose only (see Section 6).

In the pruning process, BotGraph traverses the tree out-

put by Algorithm 1. For each node in the tree, it computes

s1, the confidence measure for this node to be a bot-user

component, and removes the node if s1 is smaller than a

threshold S. In total, fewer than 10% of Hotmail accounts

sent more than 3 emails per day, so intuitively, we can set

the threshold S = 0.1. In order to minimize the number

of false positive users, we conservatively set the threshold

S = 0.8, i.e., we only consider nodes where at least 80%

of users sent more than 3 emails per day as suspicious

bot-user groups (discussed further in Section 6.2).

4.2.3 Bot-User Grouping

After pruning, a candidate connected-component may

contain two or more bot-user groups. BotGraph proceeds

to decompose such components further into individual

bot-user groups. The correct grouping is important for

two reasons:

• We can extract validation features (e.g., s2 mentioned

above and patterns of account names) more accurately

from individual bot-user groups than from a mixture

of different bot-user groups.

• Administrators may want to investigate and take differ-

ent actions on different bot-user groups based on their

behavior.

We use the random graph model to guide the process of

selecting the correct bot-user groups. According to the

random graph model, the user-user subgraph of a bot-user

group should consist of a giant connected-component

plus very small components and/or isolated vertices. So

BotGraph traverses the tree again to select tree nodes that

are consistent with such random graph property. For each

node V being traversed, there are two cases:

• V ’s children contain one or more giant components

whose sizes areO(N), whereN is the number of users

in node V ;
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• V ’s children contain only isolated vertices and/or

small components with size of O(log(N)).

For case 1, we recursively traverse each subtree rooted by

the giant components. For case 2, we stop traversing the

subtree rooted at the V . Figure 4 illustrates the process.

Here the root node R is decomposed into two giant com-

ponents A and B. B is further decomposed into another

two giant components D and E, while A is decomposed

into one giant component C. The giant component dis-

appears for any further decomposition, indicated by the

dash-lines. According to the theory, A, C, D, and E are

bot-user groups. If a node is chosen as a bot-user group,

the sub-tree rooted at the chosen node is considered be-

longing to the same bot-user group. That is, if we pick A,

we disregard its child C as it is a subcomponent of A.

5 Large-scale Parallel Graph Construction

The major challenge in applying BotGraph is the con-

struction of a large user-user graph from the Hotmail

login data – the first stage of our graph-based analysis

described in Section 3.2. Each record in the input log

data contains three fields: UserID, IPAddress, and Login-
Timestamp. The output of the graph construction is a list

of edges in the form of UserID1, UserID2, and Weight.
The number of users on the graph is over 500 million

based on a month-long login data (220 GB), and this

number is increasing as the Hotmail user population is

growing. The number of edges of the computed graph is

on the order of hundreds of billions. Constructing such

a large graph using a single computer is impractical. An

efficient, scalable solution is required so that we could

detect attacks as early as possible in order to take timely

reactive measures.

For data scalability, fault tolerance, and ease of pro-

gramming, we choose to implement BotGraph using

Dryad/DryadLINQ, a powerful programming environ-

ment for distributed data-parallel computing. How-

ever, constructing a large user-user graph using

Dryad/DryadLINQ is non-trivial. This is because the

resulting graph is extremely large, therefore a straight-

forward parallel implementation is inefficient in perfor-

mance. In this section, we discuss in detail our solu-

tions. We first present both a simple parallelism method

and a selective filtering method, and then describe sev-

eral optimization strategies and their performance im-

pacts. We also discuss several important issues arising

in the system implementation, such as data partitioning,

data processing flow, and communication methods. Us-

ing a one-month log as input, our current implementation

can construct a graph with tens of millions of nodes in 1.5

hours using a 240-machine cluster. During this process,

BotGraph filters out weight one edges, and the remaining

number of edges for the next-stage processing is around

8.6 billion.

We also implemented the second stage of finding con-

nected components using Dryad/DryadLINQ. This stage

can be solved using a divide and conquer algorithm. In

Inputs: partitioned data according

to IP addresses

For any two users Ui and Uj sharing

the same IP, output an edge with

weight one (Ui , Uj  , 1)

Aggregate edge weights

Final graph results

Hash distribute edges according to Ui

Optional local aggregation step

1

2

3

4

5

Figure 5: Process flow of Method 1.

particular, one can divide the graph edges into multi-

ple partitions, identify the connected subgraph compo-

nents in each partition, and then merge the incomplete

subgraphs iteratively. To avoid overloading the merging

node, instead of sending all outputs to a single merging

node, each time we merge two results from two parti-

tions. This parallel algorithm is both efficient and scal-

able. Using the same 240-machine cluster in our experi-

ments, this parallel algorithm can analyze a graph with

8.6 billion edges in only 7 minutes — 34 times faster

than the 4 hour running time by a single computer. Given

our performance bottleneck is at the first stage of graph

construction instead of graph analysis, we do not further

elaborate this step.

5.1 Two Implementation Methods

The first step in data-parallel applications is to partition

data. Based on the ways we partition the input data,

we have different data processing flows in implementing

graph construction.

5.1.1 Method 1: Simple Data Parallelism

Our first approach is to partition data according to IP ad-

dress, and then to leverage the well known Map and Re-

duce operations to straightforwardly convert graph con-

struction into a data-parallel application.

As illustrated in Figure 5, the input dataset is parti-

tioned by the user-login IP address (Step 1). During the

Map phase (Step 2 and 3), for any two users Ui and Uj

sharing the same IP-day pair, where the IP address is

from Autonomous System ASk, we output an edge with

weight one e =(Ui, Uj , ASk). Only edges pertaining to

different ASes need to be returned (Step 3). To avoid out-

putting the same edge multiple times, we use a local hash

table to filter duplicate edges.

After the Map phase, all the generated edges (from all

partitions) will serve as inputs to the Reduce phase. In

particular, all edges will be hash partitioned to a set of

processing nodes for weight aggregation using (Ui, Uj)

tuples as hash keys (Step 4) . Obviously, for those user

pairs that only share one IP-day in the entire dataset, there

is only one edge between them. So no aggregation can

be performed for these weight one edges. We will show

later in Figure 7 that weight one edges are the dominate

source of graph edges. Since BotGraph focuses on only
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2. Compute local summary: list of IPs

1. Input: partitioned data by user IDs

3. Merge and distribute local summary

4.Selectively return login records

5. Hash distribute selected login records

7. Re-label partitioned input data

8. Local graph construction

9. Final graph results

6. Aggregate hashed distributed login records

Figure 6: Process flow of Method 2.

edges with weight two and above, the weight one edges

introduce unnecessary communication and computation

cost to the system. After aggregation, the outputs of the

Reduce phase are graph edges with aggregated weights.

5.1.2 Method 2: Selective Filtering

An alternative approach is to partition the inputs based on

user ID. In this way, for any two users that were located in

the same partition, we can directly compare their lists of

IP-day pairs to compute their edge weight. For two users

whose records locate at different partitions, we need to

ship one user’s records to another user’s partition before

computing their edge weight, resulting in huge commu-

nication costs.

We notice that for users who do not share any IP-day

keys, such communication costs can be avoided. That

is, we can reduce the communication overhead by se-
lectively filtering data and distributing only the related

records across partitions.

Figure 6 shows the processing flow of generating user-

user graph edges with such an optimization. For each

partition pi, the system computes a local summary si to

represent the union of all the IP-day keys involved in this

partition (Step 2). Each local summary si is then dis-

tributed across all nodes for selecting the relevant input

records (Step 3). At each partition pj(j = i), upon re-

ceiving si, pj will return all the login records of users

who shared the same IP-day keys in si. This step can be

further optimized based on the edge thresholdw: if a user

in pj shares fewer than w IP-day keys with the summary

si, this user will not generate edges with weight at least

w. Thus only the login records of users who share at least

w IP-day keys with si should be selected and sent to par-

tition pi (Step 4)). To ensure the selected user records will

be shipped to the right original partition, we add an ad-

ditional label to each original record to denote their par-

tition ID (Step 7). Finally, after partition pi receives the

records from partition pj , it joins these remote records

with its local records to generate graph edges (Step 8 and

9).

Other than Map and Reduce, this method requires two

additional programming interface supports: the operation

to join two heterogeneous data streams and the operation

to broadcast a data stream.
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Figure 7: Edge weight distribution.

5.1.3 Comparison of the Two Methods

In general, Method 1 is simple and easy to implement,

but Method 2 is more optimized for our application. The

main difference between the two data processing flows is

that Method 1 generates edges of weight one and sends

them across the network in the Reduce phase, while

Method 2 directly computes edges with weight w or

more, with the overhead of building a local summary and

transferring the selected records across partitions. Fig-

ure 7 shows the distribution of edge weights using one-

month of user login records as input. Here, the number

of weight one edges is almost three orders of magnitude

more than the weight two edges. In our botnet detection,

we are interested in edges with a minimum weight two

because weight one edges do not show strong correlated

login activities between two users. Therefore the com-

putation and communication spent on generating weight

one edges are not necessary. Although in Method 1, Step

3 can perform local aggregation to reduce the number

of duplicated weight one edges, local aggregation does

not help much as the number of unique weight one edges

dominates in this case.

Given our implementation is based on the existing

distributed computing models such as MapReduce and

DryadLINQ, the amount of intermediate results impacts

the performance significantly because these program-

ming models all adopt disk read/write as cross-node com-

munication channels. Using disk access as communica-

tion is robust to failures and easy to restart jobs [6, 29].

However, when the communication cost is large such as

in our case, it becomes a major bottleneck of the over-

all system running time. To reduce this cost, we used a

few optimization strategies and will discuss them in the

next subsection. Completely re-designing or customizing

the underlying communication channels may improve the

performance in our application, but is beyond the scope

of this paper.

Note the amount of cross-node communication also

depends on the cluster size. Method 1 results in a constant

communication overhead, i.e., the whole edge set, regard-

less of the number of data partitions. But for Method

2, when the number of computers (hence the number of

data partitions) increases, both the aggregated local sum-

mary size and the number of user-records to be shipped
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(a) Serial merge (b) Parallel merge

Figure 8: (a) Default query execution plan (b) Optimized query

execution plan.

increase, resulting in a larger communication overhead.

In the next subsections, we present our implementations

and evaluate the two different methods using real-data ex-

periments.

5.2 Implementations and Optimizations

In our implementation, we have access to a 240-machine

cluster. Each machine is configured with an AMD Dual

Core 4.3G CPU and 16 GB memory. As a pre-processing

step, all the input login records were hash partitioned

evenly to the computer cluster using the DryadLINQ

built-in hash-partition function.

Given the Hotmail login data is on the order of hun-

dreds of Gigabytes, we spent a number of engineering

efforts to reduce the input data size and cross-node com-

munication costs. The first two data reduction strategies

can be applied to both methods. The last optimization is

customized for Method 2 only.

1. User pre-filtering: We pre-filter users by their lo-

gin AS numbers: if a user has logged in from IP addresses

across multiple ASes in a month, we regard this user as

a suspicious user candidate. By choosing only suspicious

users (using 2 ASes as the current threshold) and their

records as input, we can reduce the number of users to

consider from over 500 million (about 200-240GB) to

about 70 million (about 100GB). This step completes in

about 1-2 minutes.

2. Compression: Given the potential large communi-

cation costs, BotGraph adopts the DryadLINQ provided

compression option to reduce the intermediate result size.

The use of compression can reduce the amount of cross-

node communication by 2-2.5 times.

3. Parallel data merge: In Method 2, Step 3 merges

the local IP-day summaries generated from every node

and then broadcasts the aggregated summary to the entire

cluster. The old query plan generated by DryadLINQ is

shown in Figure 8 (a), where there exists a single node

that performs data aggregation and distribution. In our

experiments, this aggregating node becomes a big bot-

tleneck, especially for a large cluster. So we modified

DryadLINQ to generate a new query plan that supports

parallel data aggregation and distribution from every

processing node (Figure 8 (b)). We will show in Sec-

tion 5.3 that this optimization can reduce the broadcast

time by 4-5 times.

Communication data size Total running time

Method 1 12.0 TB > 6 hours

Method 2 1.7 TB 95 min

Table 1: Performance comparison of the two methods using the

2008-dataset.

Communication data size Total running time

Method 1 (no comp.) 2.71 TB 135 min

Method 1 (with comp.) 1.02 TB 116 min

Method 2 (no comp.) 460 GB 28 min

Method 2 (with comp.) 181 GB 21 min

Table 2: Performance comparison of the two methods using a

subset of the 2008-dataset.

5.3 Performance Evaluation

In this section, we evaluate the performance of our im-

plementations using a one-month Hotmail user-login log

collected in Jan 2008 (referred to as the 2008-dataset).

The raw input data size is 221.5 GB, and after pre-

filtering, the amount of input data is reduced to 102.9

GB. To use all the 240 machines in the cluster, we gen-

erated 960 partitions to serve as inputs to Method 1 (so

that the computation of each partition fits into memory),

and generated 240 partitions as inputs to Method 2. With

compression and parallel data merge both enabled, our

implementation of Method 2 finishes in about 1.5 hours

using all the 240 machines, while Method 1 cannot finish

within the maximum 6 hour quota allowed by the com-

puter cluster (Table 1). The majority of time in Method

1 is spent on the second Reduce step to aggregate a huge

volume of intermediate results. For Method 2, the local

summary selection step generated about 5.8 GB aggre-

gated IP-day pairs to broadcast across the cluster, result-

ing 1.35 TB out of the 1.7 TB total traffic.

In order to benchmark performance, we take a smaller

dataset (about 1/5 of the full 2008-dataset) that Method

1 can finish within 6 hours. Table 2 shows the commu-

nication costs and the total running time using the 240

machine cluster. While Method 1 potentially has a better

scalability than Method 2 as discussed in Section 5.1.3,

given our practical constraints on the cluster size, Method

2 generates a smaller amount of traffic and outperforms

Method 1 by about 5-6 times faster. The use of compres-

sion reduces the amount of traffic by about 2-3 times, and

the total running time is about 14-25% faster.

To evaluate the system scalability of Method 2, we

vary the number of data partitions to use different num-

ber of computers. Figure 9 shows how the communica-

tion overheads grow. With more partitions, the amount

of data generated from each processing node slightly de-

creases, but the aggregated local summary data size in-

creases (Figure 9 (a)). This is because popular IP-day

pairs may appear in multiple data partitions and hence

in the aggregated summary multiple times. Similarly,

the same user login records will also be shipped across

a larger number of nodes, increasing the communication
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Figure 9: Communication data size as we vary the number of

input data partitions (a) Local summary size in terms of the

number of IP-day keys. (b) Total number of selected user lo-

gin records to be sent across the network.
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Figure 10: Running time as we vary the number of input data

partitions for Method 2. (a) Total running time of all partitions.

(b) The running of each partition. The error bars show the max

and the min running time across all partitions.

costs as the system scales (Figure 9 (b)).

Even though the communication costs increase, the to-

tal running time is still reduced with a larger cluster size.

Figure 10 (a) shows the total running time and its break-

down across different steps. When the cluster size is

small (10 partitions), a dominant amount of time is spent

on computing the graph edges. As the system scales, this

portion of time decreases sharply. The other three steps

are I/O and network intensive. Their running time slightly

decreases as we increase the number of partitions, but the

savings get diminished due to the larger communication

costs. Figure 10 (b) shows the average running time spent

on processing each partition, and its variations are very

small.

We now examine the benefits of adopting parallel data

merge. The purpose of parallel data merge is to remove

the bottleneck node that performs data aggregation and

broadcasting. Since it is difficult to factor out the network

transfer time savings alone (network, disk I/O, and com-

putation are pipelined), we compare the time spent on the

user record selection step (Figure 11 (a)). This optimiza-

tion can reduce the processing latency significantly as the

cluster size increases (75% reduction in the 200 node sce-

nario). Without parallel data merge, the processing time

increases almost linearly, but with this optimization, the

amount of time remains roughly constant.

For Method 2, one reason for the large communica-

tion costs is that for botnet users, their graph component

 10  50 100 150 200
0

10

20

30

40

50

Number of partitions

U
s
e
r 

re
c
o
rd

 s
e
le

c
ti
o
n
 t
im

e
 (

m
in

u
te

s
) With parallel merge

Without parallel merge

 random partition strategic partition
0

50

100

150

200

250

300

350

400

T
im

e
 (

m
in

u
te

s
)

Minimum time

Maximum time

(a) (b)

Figure 11: (a) The processing time of user-record selection with

and without parallel data merge. (b) Minimal and maximum

running time of partitions with and without strategic data parti-

tioning.

is both large and dense. Therefore, one potential opti-

mization technique is to strategically partition the login

records. Intuitively, we can reduce the communication

costs if we pre-group users so that users who are heav-

ily connected are placed in one partition, and users who

are placed in different partitions have very few edges be-

tween them. If so, Step 4 in Method 2 will return only

a small number of records to ship across different nodes.

Surprisingly, we found this strategy actually induced neg-

ative impact on the system performance.

Figure 11 (b) shows the graph construction time spent

at a processing node with and without strategic data par-

titioning. We chose the 240 input data partition scenario

and use the full dataset to illustrate the performance dif-

ference. In the first case, we evenly distributed login

records by hashing user IDs. In the second case, we

chose a large botnet user group with 3.6M users and put

all their login records evenly across 5 partitions, with the

remaining data evenly distributing across the remaining

partitions. This scenario assumes the best prior knowl-

edge of user connections. Although in both cases, the

total amount of input data in each partition is roughly uni-

form, we observe a big difference between the maximum

and minimum time in computing the edges across nodes.

Without strategic partitioning, the maximum and mini-

mum processing time is very close. In contrast, strategic

partitioning caused a huge degree of unbalance in work-

load, resulting in much longer total job running time.

6 Bot-user Detection and Validation

We use two month-long datasets as inputs to our system:

a 2007-dataset collected in Jun 2007, and a 2008-dataset

collected in Jan 2008. Each dataset includes two logs: a

Hotmail login log (format described in Section 5) and a

Hotmail signup log. Each record in the signup log con-

tains a user-ID, the remote IP address used for signup,

and the signup timestamp. For each dataset, we run our

EWMA-based anomaly detection on the signup log and

run our graph based detection on the login log. Using

both components, BotGraph detected tens of millions of

bot users and millions of botnet IPs. Table 3 summarizes

the results for both months. We present the detailed re-

sults and perform evaluations next.
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Month 06/2007 01/2008

# of bot-users 5.97M 20.58M

# of bot-IPs 2.71M 1.84M

Table 3: Total bot-users and bot IP

addresses detected using both history

based detection and user-user graph.

Month 06/2007 01/2008

# of bot IPs 82,026 240,784

# of bot-user accounts 4.83 M 16.41 M

Avg. anomaly window 1.45 day 1.01 day

Table 4: History based detection of bot IP

addresses and bot-user accounts.

Month 06/2007 01/2008

# of bot-groups 13 40

# of bot-accounts 2.66M 8.68M

# of unique IPs 2.69M 1.60M

Table 5: Bot IP addresses and bot-user ac-

counts detected by user-user graphs.
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Figure 12: (a) Cumulative distribution of anomaly window size

in terms of number of days. (b) Cumulative distribution of the

number of accounts signed up per suspicious IP.

6.1 Detection Using Signup History

Table 4 shows that the EWMA algorithm detected 21.2

million bot-user accounts when applied to the two Hot-

mail signup logs. Comparing Jan 2008 with Jun 2007,

both the number of bot IPs and the signed-up bot-users

increased significantly. In particular, the total number of

bot-accounts signed up in Jan 2008 is more than three

times the number in Jun 2007. Meanwhile, the anomaly

window is shortened from an average of 1.45 days to 1.01

days, suggesting each attack became shorter in Jan 2008.

Figure 12 (a) shows the cumulative distribution of the

anomaly window sizes associated with each bot IP ad-

dress. A majority (80% - 85%) of the detected IP ad-

dresses have small anomaly windows, ranging from a few

hours to one day, suggesting that many botnet signup at-

tacks happened in a burst.

Figure 12 (b) shows the cumulative distributions of the

number of accounts signed up per bot IP. As we can see,

the majority of bot IPs signed up a large number of ac-

counts, even though most of them have short anomaly

windows. Interestingly, the cumulative distributions de-

rived from Jun 2007 and Jan 2008 overlap well with each

other, although we observed a much larger number of

bot IPs and bot-users in Jan 2008. This indicates that

the overall bot-user signup activity patterns still remain

similar perhaps due to the reuse of bot-account signup

tools/software.

6.2 Detection by User-User Graph

We apply the graph-based bot-user detection algorithm

on the Hotmail login log to derive a tree of connected

components. Each connected component is a set of bot-

user candidates. We then use the procedures described in

Section 4.2.2 to prune the connected components of nor-

mal users. Recall that in the pruning process, we apply

a threshold on the confidence measure of each compo-

nent (computed from the “email-per-day” feature) to re-
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Figure 13: Bot-user group properties: (a) The the number of

users per group, (b) The peakness score of each group, reflect-

ing whether there exists a strong sharp peak for the email size

distribution.

move normal user components. In our experiments, the

confidence measures are well separated: most of the bot-

groups have confidence measures close to 1, and a few

groups are between 0.4 and 0.6. We observe a wide mar-

gin around confidence measure of 0.8, which we choose

as our threshold. As discussed in Section 4.2.2, this is

a conservative threshold and is in-sensitive to noises due

to the wide margin. For any group that has a confidence

measure below 0.8, we regard it as a normal user group

and prune it from our tree.

Table 5 shows the final detection results after pruning

and grouping. Both the number of bot-users and the num-

ber of bot IP addresses are on the order of millions — a

non-trivial fraction of all the users and IP addresses ob-

served by Hotmail. We find the two sets of bot-users

detected in two months hardly overlap. These accounts

were stealthy ones, each sending out only a few to tens

of spam emails during the entire month. Therefore, it is

difficult to capture them by looking for aggressive send-

ing patterns. Due to their large population, detecting and

sanitizing these users are important both to save Hotmail

resources and to reduce the amount of spam sent to the

Internet. Comparing Jan 2008 with Jun 2007, the number

of bot-users tripled, suggesting that using Web portals as

a spamming media has become more popular.

Now we study the properties of bot-users at a group

level. Figure 13 (a) shows that the number of users in

each group ranges from thousands to millions. Compar-

ing Jan 2008 with Jun 2007, although the largest bot-

user group remains similar in size, the number of groups

increased significantly. This confirms our previous ob-

servation that spammers are more frequently using Web

email accounts for spam email attacks.

We next investigate the email sending patterns of the

detected bot user groups. We are interested in whether

there exists a strong peak of email sizes. We use the peak-
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ness score metric s2 (defined in Section 4.2.2) to quantify

the degree of email size similarity for each group. Fig-

ure 13 (b) shows the distributions of s2 in sorted order.

A majority of groups have peakness scores higher than

0.6, meaning that over 60% of their emails have similar

sizes. For the remaining groups, we performed manual

investigation and found they have multiple peaks, result-

ing in lower scores. The similarity of their email sizes is

a strong evidence of correlated email sending activities.

In the next two sub-sections, we explore the quality of

the total captured 26 million bot-users. First, we examine

whether they are known bad and how many of them are

our new findings. Second, we estimate our detection false

positive rates.

6.3 Known Bot-users vs. New Findings

We evaluate our detected bot-users against a set of known

spammer users reported by other email servers in Jan

2008 4.

Denote H as the set of bot-users detected by signup

history using EWMA, Ks as the set of known spam-

mer accounts signed up in the month that we study, and

Ks ∩ H as the intersection between H and Ks. The ra-

tio of Ks∩H

H
represents the percentage of captured bot-

users that are previously known bad. In other words,

1 −
Ks∩H

H
is our new findings. The ratio of Ks∩H

Ks

de-

notes the recall of our approach. Table 6 shows that, in

Jun 2007, 85.15% of the EWMA-detected bot-user de-

tected are already known bad, and the detected bot-user

covers a significant fraction of bad account, i.e., recall =

67.96%. Interestingly, Jan 2008 yields quite different

results. EWMA is still able to detect a large fraction of

known bad account. However, only 8.17% of detected

bad-users were reported to be bad. That means 91.83%

of the captured spamming accounts are our new findings.

We apply a similar study to the bot-users detected by

the user-user graph. DenoteKl as the set of known spam-

mers users that log in from at least 2 ASes, L as the set

of bot-users detected using our user-user graph based ap-

proach, and Kl ∩ L as the intersect between Kl and L.

Again we use the ratios of Kl∩L

L
and Kl∩L

Kl

to evaluate

our result L, as shown in Table 7. Using our graph-

based approach, the recall is higher. In total, we were

able to detect 76.84% and 85.80% of known spammer

users in Jun 2007 and Jan 2008, respectively. Similar to

EWMA, the graph-based detection also identified a large

number (54.10%) of previously unknown bot-accounts in

Jan 2008. This might be because these accounts are new

ones and haven’t been used aggressively to send out a

massive amount of spam emails yet. So, they are not yet

reported by other mail servers as of Jan 2008. The ability

of detecting bot-accounts at an early stage is important to

to give us an upper hand in the anti-spam battle.

4These users were complained of having sent outbound spam

emails.
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Figure 14: Validation of login-graph detected bot-users using

naming scores.

6.4 False Positive Analysis

In the previous subsection, we analyzed the overlap be-

tween our results and the set of known bad accounts. For

the remaining ones, validation is a challenging task with-

out the ground truth. We examine the following two ac-

count features to estimate the false positive rates: naming

patterns and signup dates.

6.4.1 Naming Patterns

For the identified groups, we found almost every group

follows a very clear user-name template, for example, a

fixed-length sequence of alphabets mixed with digits 5.

Examples of such names are ‘‘w9168d4dc8c5c25f9” and

‘‘x9550a21da4e456a2”.

To quantify the similarity of account names in a group,

we introduce a naming pattern score, which is defined as

the largest fraction of users that follow a single template.

Each template is a regular expression derived by a regular

expression generation tool [27]. Since many accounts de-

tected in Jun 2007 were known bad and hence cleaned by

the system already, we focus on bot-user groups detected

in Jan 2008.

Figure 14 shows the naming score distribution. A ma-

jority of the bot-user groups have close to 1 naming pat-

tern scores, indicating that they were signed up by spam-

mers using some fixed templates. There are only a few

bot-user groups with scores lower than 0.95. We manu-

ally looked at them and found that they are also bad users,

but the user names come from two naming templates.

It is possible that our graph-based approach mixed two

groups, or the spammers purchased two groups of bot-

users and used them together. Overall, we found in total

only 0.44% of the identified bot-users do not strictly fol-

low the naming templates of their corresponding groups.

6.4.2 Signup Dates

Our second false positive estimate is based on examin-

ing the signup dates of the detected bot-users. Since the

Web-account abuse attack is recent and started in sum-

mer 2007, we regard all the accounts signed up before

2007 as legitimate accounts. Only 0.08% of the identi-

fied bot-users were signed up before year 2007. To cal-

5Note it is hard to directly use the naming pattern itself to identify

spamming accounts due to the easy countermeasures.
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I = Ks ∩H 06/2007 01/2008

I/H 85.15% 8.17%

I/Ks 67.96% 52.41%

Table 6: Comparing bot-users detected by signup history us-

ing EWMA with known spammer user sets, using the ratios of
Ks∩H

H
and Ks∩H

Ks
. See text for the definition of H and Ks.

I = Kl ∩ L 06/2007 01/2008

I/L 90.95% 45.9%

I/Kl 76.84% 85.8%

Table 7: Comparing bot-users detected by user-user graph

with known spammer user sets, using the ratios of
Kl∩L

L

and
Kl∩L

Kl

. See text for the definition of Kl and L.

ibrate our results against the entire user population. We

look at the sign up dates of all users in the input dataset.

About 59.1% of the population were signed up before

2007. Assuming the normal user signup-date distribu-

tions are the same among the overall population and our

detected user set, we adjust the false positive rate to be

0.08%/59.1% = 0.13%
The above two estimations suggest that the false pos-

itive of BotGraph is low. We conservatively pick the

higher one 0.44% as our false positive rate estimate.

7 Discussion

In this paper, we demonstrated that BotGraph can detect

tens of millions of bot-users and millions of bots. With

this information, operators can take remedy actions and

mitigate the ongoing attacks. For bot-users, operators can

block their accounts to prevent them from further sending

spam, or apply more strict policies when they log in (e.g.,

request them to do additional CAPTCHA tests). For de-

tected bot IP addresses, one approach is to blacklist them

or rate limit their login activities, depending on whether

the corresponding IP address is a dynamically assigned

address or not. Effectively throttling botnet attacks in the

existence of dynamic IP addresses is ongoing work.

Attackers may wish to evade the BotGraph detection

by developing countermeasures. For example, they may

reduce the number of users signed up by each bot. They

may also mimic the normal user email-sending behav-

ior by reducing the number of emails sent per account

per day (e.g., fewer than 3). Although mimicking normal

user behavior may evade history-based change detection

or our current thresholds, these approaches also signifi-

cantly limit the attack scale by reducing the number of

bot-accounts they can obtain or the total number of spam

emails to send. Furthermore, BotGraph can still capture

the graph structures of bot-user groups from their login

activity to detect them.

A more sophisticated evasion approach may bind each

bot-user to only bots in one AS, so that our current im-

plementation would pre-filter them by the two AS thresh-

old. To mitigate this attack, BotGraph may revise the

edge weight definition to look at the number of IP pre-

fixes instead of the number of ASes. This potentially

pushes the attacker countermeasures to be more like a

fixed IP-account binding strategy. As discussed in Sec-

tion 3.2, binding each bot-user to a fixed bot is not de-

sirable to the spammers. Due to the high botnet churn

rate, it would result in a low bot-user utilization rate. It

also makes attack detection easier by having a fixed group

of aggressive accounts on the same IP addresses all the

time. If one of the bot-accounts is captured, the entire

group can be easily revealed. A more generalized solu-

tion is to broaden our edge weight definition by consider-

ing additional feature correlations. For example, we can

potentially use email sending patterns such as the desti-

nation domain [24], email size, or email content patterns

(e.g., URL signatures [27]). As ongoing work, we are

exploring a larger set of features for more robust attack

detection.

In addition to using graphs, we may also consider other

alternatives to capture the correlated user activity. For

example, we may cluster user accounts using their login

IP addresses as feature dimensions. Given the large data

volume, how to accurately and efficiently cluster user ac-

counts into individual bot-groups remains a challenging

research problem.

It is worth mentioning that the design and imple-

mentation of BotGraph can be applied in different ar-

eas for constructing and analyzing graphs. For ex-

ample, in social network studies, one may want to

group users based on their buddy relationship (e.g., from

MSN or Yahoo messengers) and identify community pat-

terns. Finally, although our current implementations are

Dryad/DryadLINQ specific, we believe the data process-

ing flows we propose can be potentially generalized to

other programming models.

8 Conclusion

We designed and implemented BotGraph for Web mail

service providers to defend against botnet launched Web-

account abuse attacks. BotGraph consists of two com-

ponents: a history-based change-detection component to

identify aggressive account signup activities and a graph-

based component to detect stealthy bot-user login activ-

ities. Using two-month Hotmail logs, BotGraph suc-

cessfully detected more than 26 million botnet accounts.

To process a large volume of Hotmail data, BotGraph is

implemented as a parallel Dryad/DryadLINQ application

running on a large-scale computer cluster. In this paper,

we described our implementations in detail and presented

performance optimization strategies. As general-purpose

distributed computing frameworks have become increas-

ingly popular for processing large datasets, we believe

our experience will be useful to a wide category of appli-

cations for constructing and analyzing large graphs.
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A EWMA based Aggressive Signup
Detection

Exponentially Weighted Moving Average (EWMA) is a

well known moving average based algorithm to detect

sudden changes. EWMA is both simple and effective,

and has been widely used for anomaly detection [12].

Given a time series data, let the observation value at

time t be Yt. Let St be the predicted value at time t and

α (0 ≤ α ≤ 1) be the weighting factor, EWMA predicts

St as
St = α× Yt−1 + (1− α)× St−1 (1)

We define the absolute prediction error Et and the rel-

ative prediction error Rt as:

Et = Yt − St, Rt = Yt/max(St, ) (2)

where  is introduced to avoid the divide-by-zero prob-

lem. A large prediction error Et or Rt indicates a sudden

change in the time series data and should raise an alarm.

When the number of new users signed up has dropped to

the number before the sudden change, the sudden change

ends. We define the time window between the start and

the end of a sudden change as the anomaly window. All

the accounts signed up during this anomaly window are

suspicious bot-users.

In our implementation, we consider the time unit of

a day, and hence Et is the predicted number of daily

signup accounts. For any IP address, if both Et > δE
and Rt > δR, we mark day t as the start of its anomaly

window. From a two-year Hotmail signup log, we derive

the 99%-tile of the daily number of account signups per

IP address. To be conservative, We set the threshold δE
to be twice this number to rule out non-proxy normal IPs.

For proxies, the relative prediction error is usually a bet-

ter metric to separate them from bots. It is very rare for a

proxy to increase its signup volume by 4 times overnight.

So we conservatively set δR to 4.
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