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ABSTRACT

Botnets constitute a primary threat to Internet security.
The ability to accurately distinguish botnet traffic from non-
botnet traffic can help significantly in mitigating malicious
botnets. We present a novel approach to botnet detection
that applies deep learning on flows of TCP/UDP/IP-packets.
In our experimental results with a large dataset, we obtained
99.7% accuracy for classifying P2P-botnet traffic. This is
comparable to or better than conventional botnet detection
approaches, while reducing efforts for feature engineering and
feature selection to a minimum.
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1 INTRODUCTION

A botnet is a network of systems infected by bot malware. The
strength of bot malware is, compared to other malware such
as Trojans and root kits, the ability to communicate with the
attacker, commonly known as a botmaster. Botnets can be
used for a variety of activities, such as malware distribution,
click fraud, identify and credential theft, bitcoin mining, and
distributed denial-of-service (DDoS) attacks.

Botnet architectures have evolved over the past 20 years.
The first botnets used a central host for command and control
(C&C) with low design complexity and low message latency
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as advantage. Survivability, however, is also low because the
central host is vulnerable to attacks or takedown attempts
[3]. To increase resilience, many modern botnets use hybrid
peer-to-peer (P2P) architectures.

Various P2P-botnet detection approaches have been stud-
ied that mostly detect botnet activity by passive monitoring
of the network traffic. They typically apply machine learning
algorithms to classify network traffic and rely on feature
engineering and feature selection. A significant amount of
work and domain knowledge is required to extract high-level
network traffic metrics and determine which features from
the monitored traffic data to use. This is relaxed in deep-
learning methods that aim to learn feature hierarchies by
themselves, where higher-level features are gradually learned
by composing lower-level features [7]. Deep learning has im-
proved pattern recognition significantly for image and speech
recognition [16, 23]. In addition to the advances in machine
learning, lower costs of processing hardware and increased
processing power (mainly in GPUs) have contributed to the
popularity of deep learning [12].

In botnet traffic also a hierarchy of features can be ob-
served, ranging from low-level features such as header fields in
network packets, to high-level features such as characteristics
of protocols and network flows. Hence, it is plausible that
deep learning may also provide good results for classifying
botnet traffic. In this paper, we explore to what extent this
indeed holds. To the best of our knowledge, our study is the
first attempt to apply deep learning for botnet detection.
Since modern botnets typically apply P2P-architectures, we
focus on the detection of P2P-botnets.

We executed more than 650 experiments with both deep
neural networks (DNNs) and ladder networks, using a large
dataset that contains a mix of network traffic including
data from P2P-botnets. In our experiments with DNNs we
explored supervised training as well as unsupervised pre-
training with stacked denoising auto-encoders (SDAs). In our
experiments with ladder networks we applied semi-supervised
learning, combining unsupervised and supervised training. In
the experiments we explored numerous network configura-
tions, algorithms, and parameter settings.

Our main contribution as presented in this paper is that
we apply a novel approach for botnet detection using deep
learning. Our deep-learning approach uses TCP/UDP/IP-
packet flows as inputs, from which features are extracted
automatically by the network. Hence, our approach does
not need up-front feature engineering or feature selection
based on data analysis or botnet network characteristics.
A second contribution of our work is that we experiment
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with various configurations of DNNs and ladder networks
and compare how they perform. These results are not only
valuable for researchers involved in botnet detection, but also
for researchers looking at methods and application of deep
learning.

In the remainder of this paper, we first provide an overview
of related work in section 2. In section 3 we explain the basics
of DNNs and ladder networks. In section 4 we describe our
experiments and the datasets used in detail. We present and
discuss our results in section 5. In sections 6 and 7, we outline
future work and provide concluding remarks respectively.

2 RELATED WORK

Several deep-learning studies have been published for net-
work protocol classification and network intrusion detection,
such as DDoS-attacks [29, 48]. However, to the best of our
knowledge, deep learning has not been applied yet for botnet
detection. Recent botnet detection studies rely on passive
traffic monitoring, where the most common approaches use
graph analysis on the core-network level (e.g., Internet ser-
vice provider or exchange point) or target individual hosts
[4, 28, 52]. Our study relies on simple low-level features,
whereas other studies primarily used high-level netflow fea-
tures [51, 52], which are extracted using third-party software
or obtained using handcrafted feature extractors [4]. Features
are selected or reduced based on data analysis using informa-
tion gain or principal component analysis (PCA). Another
approach is to select features based on general characteristics
of P2P-bots, such as the number of failed connections or
the ability to filter out successful DNS traffic. Many studies
follow the same approach. For instance, Narang et al. [28]
applied a conventional machine-learning algorithm (MLA)
in PeerShark that is based on four different flow features.
Saad et al. [36] also introduced an MLA based on 17 netflow
features, and Barthakur et al. [4] compared different conven-
tional MLA classifiers for P2P-botnet detection. In addition,
Zhao et al. [52] used decision trees. Not all approaches rely
on machine learning. For example, Zhang et al. [51] used a
multi-stage approach by first applying a coarse-grained filter
followed by a fine-grained filter. Some studies take a different
approach to P2P-botnet detection, for instance based on the
misuse of TCP-flags [15] and on encrypted C&C message
signature matching [35].

3 DEEP LEARNING BACKGROUND

3.1 Deep Neural Networks

A neural network is a network of connected artificial neurons.
A neuron has multiple weighted inputs and one output. The
output 𝑦 of a neuron given input vector x, weight vector w,
and activation function 𝜑 can be calculated as follows:

𝑦 = 𝜑

(︃
𝑘∑︁

𝑖=0

w𝑖x𝑖

)︃
. (1)

The sigmoid function 𝜑(𝑥) = 1/(1 + e−𝑥) is conventionally
used as an activation function.

A deep neural network uses several layers of neurons. Fig-
ure 1 shows a deep neural network, where the grey circles
represent neurons. The input layer only distributes the data
(i.e., the activation function is 𝜑 (𝑥) = 𝑥). The output layer
contains neurons whose outputs represent the classification
probabilities. One or more hidden layers are placed between
the input and output layers. A neural network is called deep
if it contains at least three hidden layers. The hidden layers
represent the knowledge of the network, and adding hidden
layers can create approximate continuous functions that map
inputs x to outputs y. If a layer 𝑙 of 𝑚 neurons has an input
column vector x(𝑙), where x(𝑙) ∈ R𝑘×1, and a weight matrix
W(𝑙), where W(𝑙) ∈ R𝑚×𝑘, then the output a(𝑙) of this layer
can be calculated using fast linear algebra:

a(𝑙) = 𝜑
(︁
W(𝑙)x(𝑙)

)︁
. (2)

Supervised neural networks are trained by feeding for-
ward training items x, calculating the error between the
observed output y and the expected output ŷ, and adjusting
the weights using backpropagation [49]. This offers a com-
putationally efficient way to calculate the gradient of a cost
function 𝐶 with respect to the weight matrix of each layer 𝑙:
∇W(𝑙)𝐶(W). The gradient descent method is used to find the
minimum by iteratively changing each layer weight matrix
W(𝑙) with the gradient:

W
(𝑙)
𝑡+1 = W

(𝑙)
𝑡 − 𝛼∇

W
(𝑙)
𝑡
𝐶(W𝑡), (3)

where 𝛼 is a small value called the learning rate.The weights
are typically updated after feeding forward several training
items (called a mini-batch).

3.2 Stacked Denoising Auto-encoders

An auto-encoder neural network can discover structure in
data by applying an unsupervised learning algorithm, where
the target label ŷ is not needed [7]. It attempts to learn
𝑓(𝑥) = 𝑥 by encoding the input with constraints (such as
limiting the number of neurons) and trying to decode back
the original input. The goal is to minimize the reconstruction
error between the input and the decoded output.
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Figure 1: A deep neural network.
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Stacked auto-encoders (SAEs) are able to learn higher-
order features. Stacked denoising auto-encoders (SDAs) [47]
are SAEs that corrupt the input data (e.g., by adding Gauss-
ian noise) to prevent the SAE from discovering uninteresting
features, such as simply copying the input.

SDAs are typically used for unsupervised pre-training.
First, a SDA network is set up with a number of layers and
neurons, and unsupervised training is performed using the
training data. Next, a DNN is set up with the same number
of layers and neurons. The weights are initialized with the
current weights of the SDA network. Finally, the DNN is
fine-tuned using supervised training.

3.3 Ladder Networks

Recently, purely supervised learning has provided results that
are equal to or better than approaches that involve unsu-
pervised pre-training [10, 23]. According to Valpola [44], the
problem is that many unsupervised learning methods (e.g.,
auto-encoders) attempt to represent as much information
about the original data as possible, whereas supervised learn-
ing endeavors to filter out information that is irrelevant to the
classification task. A solution is the use of a ladder network,
which is a combination of a DNN and nested auto-encoders
that is able to jointly train both supervised and unsupervised.
Unsupervised training is not limited to pre-training. This
makes ladder networks relevant for botnet detection, where
the amount of labeled data is limited and expensive.

Rasmus et al. [33] performed experiments with ladder
networks on two image datasets and achieved very good
results. We used this ladder network implementation for our
experiments.

3.4 Other Advances in Deep Learning

In this section, we discuss other recent advances in deep
learning that we used in our research:

Adaptive learning rate - One of the most important
parameters is the learning rate, which is used both in super-
vised and unsupervised pre-training. If the learning rate is
too small, training will be slow. If the learning rate is too
large, it will oscillate or diverge [24]. In our experiments we
applied conventional stochastic gradient descent (SGD) with
momentum and Adam. Adam computes individual adaptive
learning rates for different parameters from estimates of first
and second moments of the gradients [21].

Dropout for regularization - The ultimate goal is not
to minimize the cost-function for a training set, but to find
a model that generalizes well (by minimizing the general-
ization error). DNNs are prone to overfitting due to their
high capacity [50]. One of the frequently cited (and recently
introduced) methods to control over-fitting in deep learning is
dropout [18]. Dropout randomly omits nodes (with a certain
probability) in the network at each iteration of the training
process. A motivation for dropout is that each hidden unit
in a neural network trained with dropout must learn to work
with a randomly chosen sample of other units. This should

make each hidden unit more robust, without relying on other
hidden units to correct its errors.

Activation function - Sigmoidal activation functions
can suffer from the vanishing gradient problem [9]. Such
vanishing gradients cause slow optimization convergence, and
in some cases, the final network converges to a poor local
minimum [26]. Symmetric (around zero) sigmoids, such as
hyperbolic tangents, converge faster than standard sigmoids
[24], because the derivatives are higher.

In recent years, researchers have experimented with rec-
tified linear (ReLU) activation functions: 𝜑(𝑥) = 𝑚𝑎𝑥(0, 𝑥).
ReLU has outperformed sigmoidal activation functions in
both image [23] and acoustic [26] models.

The maxout activation function divides a layer into several
groups of neurons. The output of each group is the maximum
value of the neurons in a group [14].

4 EXPERIMENTAL SETUP

In this section we present the configurations and hyper-
parameters of the DNNs and ladder networks, as well the
dataset used in our experiments.

4.1 Network Configurations and
Hyper-parameters

In our experiments we applied DNNs, both purely supervised
and pre-trained with SDAs, and ladder networks. The learn-
ing algorithms to train these networks, have numerous hyper-
parameters that can be adjusted [8]. These hyper-parameters
are not adjusted or learned by the learning algorithm, but
are parameters to configure or steer the algorithm. We ex-
perimented with the most relevant hyper-parameters:

Architecture - We experimented with the number of
hidden layers and the number of neurons within these layers.
A pyramidal structure with a gradual reduction from the
number of inputs to the number of outputs (e.g., 4,000–2,000–
1,000–500–250–...) per layer has been successfully used in
different applications [17, 22]. For SDA an overcomplete first
hidden layer often performs best [47]. This inspired us to
experiment with one to six hidden layers with 1,000 to 5,000
nodes (30 combinations).

Activation function - For DNN we applied ReLU, max-
out and hyperbolic tangent. For SDA we only applied hy-
perbolic tangent; ReLU did not yield good results in prior
research [13].

Optimization methods - We applied SGD with mo-
mentum and Adam. For SGD with momentum, we used a
momentum of 0.5 for DNN. The initial learning rate was 0.1.
If the validation error dropped below 99.5% of the previous
error, then we scaled the learning rate by a factor of 1.05.
If the validation error increased above 105% of the previous
error, we scaled the learning rate by a factor of 0.7. For SDA
pre-training, we used a fixed learning rate of 0.01, without mo-
mentum. For Adam, we used the default values [21]: 𝛽1 = 0.9,
𝛽2 = 0.999 and 𝜖 = 10−8. During the training, we did not
change the step-size because Adam naturally performs a form
of step-size annealing [21].
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Pre-training - We pre-trained a SDA for a maximum of
20 epochs because the reconstruction error did not decrease
significantly beyond this point. For pre-training, we experi-
mented with 10% and 25% corruption levels, following the
research of Vincent et al. [47].

Regularization - In our pre-trained experiments with
SDA, we did not apply extra regularization during fine-tuning
because the pre-training acts as a regularizer. For the DNN
experiments we used L2-regularization and dropout. We ap-
plied dropout to both the input and hidden layers, as adding
dropout to the input layers has reduced error rates in some
studies [18]. For dropout, we used 10% and 20% for the input
layer, and 40% and 50% for the hidden layers, which follows
the research of Srivastava et al. [40]. In addition, a factor
of 0.0001 was used for L2 weight decay regularization, that
adds a term to the cost function to penalize large weights.

Stop criterion - We stopped training after 200 epochs for
DNNs pre-trained by SDA, and after 300 epochs for DNNs
without pre-training; alternatively, we stopped the training if
within 10 epochs after a new low in validation error, no new
low below current low multiplied by a threshold (0.995) was
reached. This decision was motivated by the desire to continue
training after attaining a new low to search for another new
low. However, this was limited to prevent overfitting.

Cost function - For SDA pre-training, we used the
squared error. If we have 𝑘 training examples this can be
calculated as follows:

𝐶(𝜃) =

𝑘∑︁
𝑖=0

(𝑟𝜃(x𝑖)− y𝑖)
2 , (4)

where 𝜃 represents the parameters (weights of the neural
network), 𝑟𝜃 represents the reconstruction vector (using 𝜃).
The negative log-likelihood function was minimized for DNN:

𝐶(𝜃) = −
𝑘∑︁

𝑖=0

log(𝑃 (y𝑖|x𝑖, 𝜃)) . (5)

4.2 Datasets Used

We performed our experiments on a 83 GB dataset that we
assembled from the following 5 datasets:

UNB ISCX IDS dataset [37] is a labeled network
dataset with complete payload data. It covers a wide range
of normal traffic as well as non-P2P-botnet attack traffic. We
filtered out the attack traffic and only used the normal traffic
from this dataset.

Ericsson Research Traffic Lab dataset [41] is a pub-
licly available dataset of non-malicious activity, such as web
browsing, email, and P2P torrent traffic.

Lawrence Berkeley National Lab dataset [31] is a
publicly available dataset. It contains network traffic captured
from the research institute’s network, such as web browsing,
email, and streaming media.

Peerrush dataset contains several P2P-botnet datasets
that we obtained from Rahbarinia et al. [32], including Storm
[19], Zeus [25], and Waledac [30]. The Waledac data were
retrieved prior to the takedown initiated by Microsoft. The

Zeus traces are relatively recent and are likely from a botnet
that is still active [32].

ISCX Botnet dataset [6] is a publicly available dataset
with botnet traffic. It contains traffic from different types
of bots. We only used flows from the P2P-botnets Zeus and
ZeroAccess.

These datasets contain both botnet and non-botnet traf-
fic in the form of network traces (PCAP-files) and flow
(sub)classification information in an XML or text-file for-
mat. We applied the overlay methodology [2] to mix traffic
from the different datasets. Simply combining all datasets
may cause a class imbalance problem [20] if most data are
botnet or non-botnet data, which causes that training of the
neural network gets biased towards the majority class. Many
strategies exist to avoid class imbalance [5]. Within each class,
we undersampled the largest subclass to create a balanced
dataset with 50% botnet traffic and 50% non-botnet traffic.
Table 1 shows details of the flows in the datasets. The ’start
date’ and ’end date’ indicate the time frame during which
data was captured; ’#flows’ indicates the total number of
flows in a dataset; ’#used’ indicates the number of flows
included in our dataset.

We constructed our dataset as outlined in Figure 2. We first
read every PCAP-file from each dataset packet by packet and
selected only TCP/UDP-packets. We ignored other packets
such as Internet Control Message Protocol (ICMP) packets
or Dynamic Host Configuration Protocol (DHCP) packets,
because they are used for network discovery/tracing and are
most likely not used for bot-to-bot communication. Next, we
combined the packets into flows. Each packet is (sub)classified
based on the flow-data provided with the dataset. A flow
is a set of packets that share a common key ⟨𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑑𝑑𝑟,
𝑠𝑜𝑢𝑟𝑐𝑒𝑝𝑜𝑟𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑑𝑑𝑟, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑝𝑜𝑟𝑡⟩ and for which
the time interval between subsequent packets is lower than a
specified threshold [11]. This threshold depends on the flow
details of the datasets. If the flow information of the dataset
did not provide this information, we used a flow gap of 60
seconds (i.e., if two hosts/ports do not exchange data for 60
seconds, we consider the flow to have ended).

From each flow, we took the first 320 packets. Analysis
of all datasets showed that 320 packets per flow represents
the 99.9 and 99.2 percentile ranks of all botnet and non-
botnet flows, respectively. From each packet, we extracted 13
fields as relevant features: Send/Receive indicator, Interval,
DSCP, TTL, Protocol, Source port, Destination port, ACK,
RST, SYN, FIN, PSH, and payload size. The Send/Receive
indicator indicates whether the host is sending or receiving
(the flows are bidirectional). This feature is omitted from the

Table 1: Flows in datasets

Dataset Start date End date #flows #used

UNB ISCX IDS 2010-06-11 2010-06-19 3,261,409 1,485,775
Ericsson Research 2007-10-08 2007-10-08 88,369 40,104
Lawrence Berkeley 2004-10-04 2005-01-08 2,144,178 976,168
Peerrush Storm 2007-10-27 2007-10-28 7,521,576 1,321,374
Peerrush Zeus 2011-11-07 2011-11-25 89,571 89,571
Peerrush Waledac 2009-02-17 2009-02-18 1,082,130 1,082,130
ISCX Botnet 1970-01-01 2013-02-04 4,878 4,878
Total 14,192,111 5,000,000
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Figure 2: Workflow of dataset preparation.

first packet. We used the timestamps in the capture headers
to compute the time interval from the previous packet. Also
this feature is omitted from the first packet, because it has no
previous packet. From the IP-headers, we used DSCP (also
known as type of service, TOS), TTL (Time To Live of the
packet), and the Protocol number. We only used the Protocol
number for TCP (6) and UDP (17), which we transformed to
-1 for TCP and 1 for UDP. From the TCP and UDP headers
we used the source port, the destination port, and the size of
the payload. We did not use the payload data itself, since all
botnets nowadays encrypt the payload data [34] and hence
no meaningful data can be obtained from this. Considering
the payload may still help in classifying non-botnet versus
botnet traffic. However, state regulation and strong privacy
protection make deep packet inspection illegal or unfavorable
[1], and therefore we ignored the payload data content. From
the TCP headers we also used the ACK, RST, SYN, FIN,
and PSH flag. We transformed the binary values of the flags
by setting them to -1 or 1 when not set or set respectively;
these features are 0 for UDP headers.

In our experiments we used neural networks with 4,158
inputs. Hence, all features of a flow (11 features for the first
packet, 13 features for each of the next 319 packets) are
applied in parallel. All features have numerical values.

We subsequently normalized the dataset, not only to pro-
vide equal weight to data with different units, but also to
prevent some weights moving faster than others. We ap-
plied a zero-mean, unit-variance (Z-score) [24]: x𝑛𝑜𝑟𝑚. =
(x− x)/𝜎(x), where x is a feature vector.

We split the final balanced dataset of five million flows
randomly into three parts: a training set of 64% of the items

used to train the network, a validation set (16%) used to
adjust the learning rate and for early stopping, and the
remaining 20% as the test set, which is the held-out set
used to calculate the error rate and detection accuracy after
training the model. Given the large size of the dataset, we
did not use k-fold cross validation.

We were also interested in how our experiments would be
affected by an unbalanced dataset. Some studies suggest that
5–10% of all broadband subscribers are infected with bot
malware [45]. We therefore also created an unbalanced test
set with 2% botnet traffic (20,000 flows) and 98% non-botnet
traffic (980,000 flows). We normalized this dataset using the
mean and standard deviation of the balanced dataset.

4.3 Hardware and Software

We performed all experiments on a system equipped with an
NVIDIA GTX 980 Titan board with 6 GB of memory and
2,816 cores. For the SDA/DNN-experiments we used PDNN
[27], which runs on top of Theano [43]. Furthermore, we used
the open-source experimental code from CuriousAI as the
ladder implementation. We made many changes to the PDNN
and ladder code. We increased the dropout training rate by a
factor of four because the implementation did not fully utilize
the GPU. Furthermore, we added support for Adam and we
improved the input/output layer to optimize handling of the
83 GB dataset. We were able to classify 25,000 flows per
second on a trained and uploaded model.

5 RESULTS

5.1 Experimental Results

We performed over 650 experiments with DNNs (supervised
or pre-trained) and ladder networks, in which we varied the
network configuration and hyper-parameters (see section 4.1).

Architecture - We performed experiments with different
network architectures, having one to six hidden layers, and
either a constant number of neurons in all hidden layers or a
pyramidal structure. Networks having a constant number of
neurons in all hidden layers, ranging from 1,000 to 5,000 nodes
per layer, yielded significantly worse results. We achieved
best results with a pyramidal network structure having a
first overcomplete hidden layer. We tested a wide range of
hidden layer configurations, ranging from non-deep (e.g.,
5,000–2,048) to very deep (e.g., 5,000–2,048–1,024–512–256–
128). We achieved our best results using a network with three
hidden-layers: 5,000–3,000–1,500 (see [46] for more details).

Activation function - We achieved better results with
hyperbolic tangent than with maxout and ReLU.

Optimization methods - For Adam, we obtained best
results using the default parameters [21], but with a smaller
step size, 𝛼 = 0.0001. We observed that Adam performed
better than SGD with momentum.

Pre-training - We achieved the best results when apply-
ing DNNs with supervised training. Pre-training with SDAs
did not yield better results. Also, ladder networks did not per-
formed as good as DNNs, however our effort to find optimal
denoising levels was restricted.
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Table 2: Experimental results

Unbalanced Balanced dataset
TPR

Hyper-parameters AUC ER (%) AUC ER (%) TNR Storm Waledac Zero Access Zeus

tanh; dropout 10%,40% 0.996 0.363 0.997 0.313 0.997 1.000 0.998 0.946 0.943
tanh; dropout 10%,50% 0.995 0.343 0.996 0.389 0.997 0.997 0.995 0.955 0.937
relu; dropout 10%,40% 0.996 0.333 0.996 0.357 0.997 0.999 0.996 0.920 0.942
relu; dropout 10%,50% 0.996 0.367 0.996 0.372 0.996 1.000 0.997 0.916 0.941
pretrain 25% noise; tanh; dropout 10%,50% 0.996 0.337 0.997 0.346 0.997 1.000 0.997 0.950 0.943
pretrain 25% noise; tanh; dropout 10%,50% 0.995 0.387 0.996 0.429 0.996 1.000 0.994 0.940 0.942
pretrain 10% noise; tanh; dropout 10%,40% 0.995 0.346 0.996 0.372 0.997 0.998 0.995 0.945 0.943
pretrain 10% noise; tanh; dropout 10%,40% 0.996 0.373 0.996 0.385 0.996 1.000 0.996 0.950 0.942
maxout poolsize 5; dropout 10%,40% 0.995 0.365 0.996 0.432 0.996 0.999 0.994 0.959 0.943
maxout poolsize 5; dropout 10%,50% 0.995 0.424 0.996 0.432 0.996 0.999 0.995 0.957 0.941
maxout poolsize 3; dropout 10%,40% 0.995 0.423 0.996 0.435 0.996 0.997 0.995 0.950 0.943
maxout poolsize 3; dropout 10%,50% 0.995 0.416 0.996 0.447 0.996 0.998 0.995 0.953 0.936
ladder; 0.01 noise; tanh 0.992 0.744 0.992 0.756 0.993 0.993 0.992 0.980 0.981
ladder; 0.01 noise; relu 0.992 0.821 0.992 0.830 0.993 0.993 0.992 0.981 0.980
ladder; 0.001 noise; tanh 0.992 0.825 0.991 0.837 0.993 0.993 0.991 0.975 0.993
ladder; 0.001 noise; relu 0.992 0.922 0.991 0.925 0.991 0.993 0.991 0.981 0.981

Regularization - We observed that dropout achieved
better results than L2-regularization. We experimented with
different dropout percentages, and achieved best results when
applying 10% dropout in the input layer and 40% dropout
in the hidden layers.

Table 2 lists our results obtained with a network archi-
tecture having three hidden-layers (5,000–3,000–1,500) and
using Adam with dropout. (See [46] for our experimental
results with other network architectures.) The table shows
results for both the unbalanced test set (2% botnet traffic,
98% non-botnet traffic) and the balanced test set (50% bot-
net traffic, 50% non-botnet traffic). The unbalanced dataset
was used only as test set, after the network was trained with
the balanced training set. For both datasets, the Area Under
the Curve (AUC) and the error rate (ER) is shown. AUC is a
measure for detection accuracy that combines sensitivity and
specificity, defined as (𝑇𝑃/(𝑇𝑃 +𝐹𝑁)+𝑇𝑁/(𝐹𝑃 +𝑇𝑁))/2,
where 𝑇𝑃 , 𝐹𝑁 , 𝐹𝑃 , and 𝑇𝑁 are the number of true positives,
false negatives, false positives, and true negatives [38]. The er-
ror rate is the percentage of incorrectly classified flows in the
test set, defined as (𝐹𝑃+𝐹𝑁)/(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)·100%.

The table also shows for the balanced test set: the true
negative rate (TNR), which is the fraction of non-botnet
traffic that is classified correctly, and the true positive rate
(TPR), which is the fraction of the botnet traffic that is
classified correctly, for the Storm, Waledac, Zero Access,
and Zeus botnets. With the balanced test set, we achieved
best results with a DNN and hyperbolic tangent activation
function when applying supervised training using Adam, 10%
dropout in the input layer, and 40% dropout in the hidden
layers, resulting in an error-rate of 0.313%, a TNR of 0.997,
and TPRs of 1.0, 0.998, 0.946, and 0.943 for respectively
Storm, Waledac, Zero Access, Zeus. The results with the
unbalanced test set are comparable.

5.2 Discussion

The use of machine learning for network intrusion detection
has been criticized, as machine learning may not be suited
for detecting still unknown anomalies [39]. However, in our
work we try to detect known anomalies only, i.e. the botnet
traffic as present in our datasets.

Table 3: Comparison of experimental results (TPR)

Botnet Narang et al. [28] Rahbarinia et al. [32] Our results

Storm 0.988 1.000 0.998
Waledac 0.989 1.000 0.995
Zeus - 0.925 0.938

Some of the features that we use in our method are influ-
enced by low-level network characteristics, such as throughput
(that influences packet timing) and MTU (that influences
payload size). Differences in such characteristics can be due to
the different types of network traffic, but they also may be due
to different types and configurations of the communication
networks in which the traffic was captured. The latter causes
the risk that our neural networks are trained to recognize the
communication networks, rather than the traffic types. We
reduce this risk by mixing data from various datasets, to get
a large variation of networks. Moreover, most of our features
do not rely on low-level network characteristics.

We compared our experimental results with three other
studies: Narang et al. [28], Rahbarinia et al. [32], and Zhang et
al. [51]. These three studies all used the same Peerrush botnet
datasets, but they all used different non-botnet datasets. For
instance, the non-botnet data used by Narang et al. only
contains benign P2P traffic, while our dataset also contained
benign non-P2P traffic. There are no standardized datasets.
This makes a precise comparison of results difficult, since
botnet classification can be more difficult or easier depending
on the variance in the non-botnet dataset.

In order to make a better comparison, we performed ad-
ditional experiments in which we used the same dataset as
Narang et al. [28] and Rahbarinia et al. [32]. First, we made a
random subset of 50% P2P-botnet and 50% P2P non-botnet
traffic, and we applied this as test set to our best trained
deep neural network. The results are listed in table 3. It can
be seen that our results outperform the results of Narang
et al. [28]. Compared to the results of Rahbarinia et al. [32],
our results are slightly worse (0.002 respectively 0.005) for
Storm and Waledac, and better for Zeus. Hence, our results
are at least comparable and often better, while our approach
does not need feature engineering or feature selection.

Zhang et al. [51] introduced a two-phase P2P-botnet detec-
tor. They used the same dataset for Storm and Waledac, but
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a different dataset for Zeus. They achieved a total accuracy
of 99.8%, which is comparable to our results.

6 FUTURE WORK

We see various opportunities for further research. Up to now
we focused on supervised feed-forward DNNs and SDAs. We
also performed experiments with ladder networks, but we did
not thoroughly search for optimal noise levels. Performing
more experiments with ladder networks, as well as other
advanced optimizers, might yield even better results. Also
other architectures might be interesting to experiment with,
such as variational auto-encoders and deep recurrent neural
networks. The latter are suited for time-series modelling
of network packets/flows, which for instance allows to base
detection on packet flows of arbitrary length (which eliminates
the possibility for botnet malware to evade our detection by
mimicking regular traffic in the first 320 packets).

We considered our neural networks as black boxes. They
are trained and tested, but we still have little understanding
of what exactly has been learned by the network. We are
unravelling the hierarchy of features that has been learned
by the networks that performed best in our experiments.

Researchers have observed that the stability of deep neural
networks trained by back propagation in a purely supervised
way can be sensitive to small perturbations in the inputs [42].
Adversarial perturbations (crafted by optimizing the inputs
to maximize the prediction error) could arbitrarily change
the network’s outputs. Whether, and to what extent, this
actually is feasible in our networks to circumvent detection,
is a topic for future research.

We received funding to continue our research on botnet
detection using advanced machine-learning approaches. We
are currently cooperating with a DNS registry, several In-
ternet service providers, and a private security company in
the Netherlands to apply our research results in practice.
The approach is to (continuously) train a neural network
with captured streams of DNS traffic, and apply the trained
network for real-time, large-scale botnet detection.

7 CONCLUSION

We studied the application of deep learning for botnet de-
tection. We obtained large datasets with P2P-botnet and
background network traffic, and used the overlay method-
ology to generate a large-scale dataset of five million flows.
We used the raw header information from packets of each
flow in this dataset as low-level inputs. This approach is
different from nearly all existing academic proposals, which
rely directly or indirectly on netflow statistics, and apply
feature engineering and feature selection. In our approach,
feature engineering is minimized.

Our results show that the detection accuracy is slightly
better with DNNs than with ladder networks. Our results
also show that similar detection accuracies can be achieved
by DNNs using supervised training and unsupervised pre-
training with SDAs. We achieved best results using a deep
feed-forward supervised neural network, with dropout and

the Adam optimizer. We achieved a P2P-botnet detection
accuracy of 99.7%, which is similar to or better than conven-
tional approaches for P2P-botnet detection as reported in
scientific literature.
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